The formation of the structure of cast composites in different solidification conditions

A. Dolata-Grosz*, M. Dyzia, J. Śleziona
Department of Alloys and Composite Materials Technology, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
* Corresponding author: E-mail address: anna.dolata-grosz@polsl.pl

Received 25.02.2008; published in revised form 01.05.2008

ABSTRACT

Purpose: In the research work the result of the reinforcement displacement and solidification analysis for aluminium cast composite with ceramic particles in different solidification conditions have been presented. The results of research on the solidification process for heterophase composite have been shown.

Design/methodology/approach: The solidification process of the AK12/ SiC+C composite suspension in various heat abstraction conditions was recorded using the ThermaCAM™E25 photometer system for temperature control and measurement. The system, equipped with a thermovision camera, LCD display and a laser pointer, was connected to a SPIDER 8 recorder and used to monitor, record and, simultaneously, to visualize the temperature changes which take place during composites’ solidification. The structure analysis for composite casts was performed by means of optical microscopy.

Findings: As the research has shown, moulds which abstract heat quickly, like a graphite or permanent mould, ensure obtaining a uniform distribution of ceramic particles in the matrix. A longer time of composite suspension solidification facilitates flotation and segregation of the reinforcing particles. Therefore, application of materials which prolong the solidification process, e.g. a sand mould, enables obtaining a gradient or laminar structure in heterophase composites.

Practical implications: The mould’s material changes the nature of composite crystallization.

Originality/value: It was found that the has a significant influence on the distribution of heterophase reinforcement in the matrix. By applying an appropriate mould material it is possible to shape the cast structure and the distribution of particles in the cast.

Keywords: Composites; Solidification; Thermovision; Structure

MATERIALS

1. Introduction

For many years the problem of casts’ solidification has been the subject of research conducted in various scientific and research centres within the country and abroad [1-19].

Based on the authors’ own research, it has been found that the structure and distribution of reinforcement, formed during solidification of composite casts, are in correlation with the size, volume fraction, type and properties of the reinforcement applied [9-19]. As the conducted tests have shown, the properties of the particles used are particularly significant in heterophase composites, where the reinforcement applied has various physicochemical characteristics. They have a significant influence on the change of temperature and time of matrix solidification, which has its consequences in the composite’s structure. It has
been found that in the same conditions of heat abstraction, it is possible to mould a diversified structure of the cast through appropriate selection of phase composition of the reinforcement [16-18].

2. Research methodology

The process of formation of the particles distribution structure in the matrix was analyzed in various conditions of heat abstraction for a heterophase composite, where a mixture of silicon carbide particles, size 25 µm, and glassy carbon particles, size 100 µm, were used as reinforcement. For the matrix, a casting alloy of aluminium with silicon, AK12, was used. Volume fraction of the reinforcement amounted to 20%. In order to obtain different solidification conditions, two moulds were used: a graphite and a sand one.

Composite suspensions were produce via a well-known method described in the literature, consisting of mechanical stirring of a liquid alloy, into which appropriately prepared reinforcing particles were being introduced [10,11]. The composite suspensions were subjected to degassing and homogenization under lowered pressure and afterwards, to gravity casting into previously prepared moulds.

The solidification process of the AK12/ SiC+C composite suspension in various heat abstraction conditions was recorded using the ThermaCAM™E25 photometer system for temperature control and measurement. The system, equipped with a thermovision camera, LCD display and a laser pointer, was connected to a SPIDER 8 recorder and used to monitor, record and, simultaneously, to visualize the temperature changes which take place during composites’ solidification. During the tests, the temperature and time of composite solidification as well as the mould temperature were recorded. The data obtained allowed determining the solidification curves, which are shown in Figs. 1 and 3. Additionally, thermal images with a 10s time interval were recorded, based on which it is possible to determine the temperature distribution on the mould’s cross-section at each stage of the solidification process. In this paper, only some selected images and temperature distribution on the mould wall are shown, for the beginning and the end of the composite suspension solidification. The macrostructure and microstructure of the composite ingots solidifying in various conditions of heat abstraction are shown in Figs. 2 and 4. The distribution of reinforcing particles on the cross-section of the cast is also visible in the Figures 3. The structure of composite ingots was examined on an MeF-2 Reichert light microscope and a Hitachi S-4200 electron microscope, applying properly made preparations.

3. Research results and analysis

As the research results have shown, the solidification of AK12/ SiC+C composite in a graphite mould proceeds in a very short time of 4.2 s at a temperature of 558°C (Fig. 1a). By analyzing the distribution of temperatures of the wall of a graphite mould during solidification of a composite ingot, it can be confirmed that the mould was fairly uniformly overheated.

The difference in temperatures between points SP01 and SP03 at the moment when the solidification process started equaled 92°C (Fig. 1b) and after the solidification, 122°C. During the solidification process, the temperature of the mould’s external wall increased by 63°C in point SP01 and by 33°C in point SP02. Such conditions of heat abstraction by a mould made of graphite lead to obtaining a structure with a uniform distribution of particles throughout the cross-section of the composite ingot (Fig. 3).

At the same time, the composite suspension AK12/ SiC+C, which was cast into a sand mould, solidified in the temperature range of 565°C-559°C for 150s (Fig. 2a). The distribution of temperatures in the wall of the sand mould during the composite ingot’s solidification shows directional heat abstraction (Fig. 2b). The difference in temperature between points SP01 (117°C) and SP03 at the moment the solidification process started equaled 57°C and after the solidification, 98°C.

![Fig. 1. The AK12/ SiC+C composite: a) solidification curve of composite solidify in a graphite mould, b) thermal image and temperature profile on the outside surface of graphite mould; start of solidification: T1 = 558°C, t1 = 13.4 s](image-url)
The formation of the structure of cast composites in different solidification conditions

4. Conclusions

Based on the analysis of the obtained results of tests concerning composite suspensions’ solidification, it has been found that the mould’s material has a significant influence on the distribution of heterophase reinforcement in the matrix. By applying an appropriate mould material it is possible to shape the cast structure and the distribution of particles in the cast. As the research has shown, moulds which abstract heat quickly, like a graphite or permanent mould, ensure obtaining a uniform distribution of ceramic particles in the matrix (Fig. 3). A longer time of composite suspension solidification facilitates floatation and segregation of the reinforcing particles. Therefore, application of materials which prolong the solidification process, e.g. a sand mould, enables obtaining a gradient or laminar structure in heterophase composites, (Fig. 4).

Acknowledgements

Scientific work financed from funds earmarked for science in the years 2005-2008 under research project no. PBZ-KBN-114/T08/ 2004.

References


