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ABSTRACT

Purpose: To reinforce the standardization of the bulge test measuring procedures by comparison of 
two different bulge forming measurement methods.

Design/methodology/approach: Two different bulge forming measurement methods are used 
simultaneously in order to reinforce the standardization of the bulge test measuring procedures. An 
indirect method, Digital Image Correlation (DIC), is compared with a direct one, ultrasound pulse-echo 
method.

Findings: The main conclusion is that the DIC system is a valid indirect measurement method to study 
bi-axial sheet metal forming.

Research limitations/implications: The constant pressure bulge test method was used and 
it yielded positive results for comparing the direct and indirect method (considering thickness 
measurement of the bulge dome), as an important research implication is that the touch less 
measurement method could be applied to other sheet metal forming processes.

Practical implications: Tension tests are used as a standard accepted procedure to determine 
material parameter values for characterizing the forming sheet behaviour. However, by using a tension 
test, only a limited strain range can be considered for determining the true stress – true strain curve. 
Based on this limitation, the bulge test is used to achieve a much larger strain range under bi-axial 
loading conditions.

Originality/value: An indirect method, Digital Image Correlation (DIC), is compared with a direct one, 
ultrasound pulse-echo method, in situ, real time and on the same specimen.

Keywords: Digital Image Correlation; Ultrasound; Bulge test; Instrumentation; Sheet metal forming
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1. Introduction 

 
Blow forming process is one of the most important and 

widely used forming methods in recent years. In this process, gas 
pressure is imposed over a sheet to make it flow into a die of the 
desired shape. For example, to produce maximum ductility in the 

SPF process case, it is desirable to adjust the forming pressure to 
keep the strain rate within an optimum range throughout the 
whole forming process [1]. 

Tension tests are used as a standard accepted procedure to 
determine material parameter values for characterizing the 
forming sheet behaviour [2],[3]. However, by using a tension test, 
only a limited strain range can be considered for determining the 
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true stress - true strain curve. Based on this limitation, the bulge 
test is used to achieve under bi-axial loading conditions much 
larger strain range. The sheet metals under biaxial tension can 
withstand much higher strain levels without local necking or 
fracture than in the tensile testing [4]. 

In this regard, the bulge test was proposed by Cheng et al [5], 
in which a thin circular plate is clamped by a hydraulic press and 
argon pressure gas is applied; the sheet is deformed assuming 
a semi-spherical shape. The dome height, h, is measured using an 
LVDT device as a function of time, geometric relationships relate 
pressure with stress, and stress-strain rate curves are obtained. 

Analytical models for bulge forming were proposed 
considering the thickness variation in bulged shapes [6-8]. 
Although the analytical and experimental results were reasonable, 
there is no agreement about how suitable they are to predict the 
thickness, as in the uniaxial tensile test. Thus, to check whether 
a model reproduces an actual test is necessary to develop an 
instrumented biaxial test, in which specific parameters are 
obtained from the test in situ, real time and from the same 
specimen. 

In this paper, a bulge test of a Pb-Sn alloy was conducted 
at room temperature. During the test, the bulge topography is 
continuously recorded using an ARAMIS 3D optical 
measurement system [9] while the dome height is also 
continuously measured with an ultrasonic pulse-echo 
technique [10]. 

Ultrasound is known to be an accurate and reliable measuring 
method. Measurements can be achieved by transmitting a sound 
pulse into just one side of a material and capturing the echo which 
arrives from the pulse reflection on the back-wall. The ultrasound 
pulse-echo is an interesting method to measure the dome height 
during the bulge test. On-line ultrasonic thickness measurement 
should/can provide a proper comparison and improve the 
understanding of the forming process. 

Firstly the indirect measurement system and the direct one are 
presented; the former is a digital image correlation system and the 
latter is the ultrasound pulse-echo method. 
 
 

2. Indirect Measurement System (IMS) 
 
 
2.1 Summary description of IMS 
 

The control system project is divided into tracking variables: 
Strain measurement and pressure measurement. In order to 
analyse thickness reduction through strain measurement, this 
system was already used to make a comparison between 
experimental measurements of the dome thickness reduction and 
the two analytical predictions using equations [11].  

Fig. 1 shows the experimental setup and the schema used to 
measure the strain and the pressure. 

In summary, the acquisition system works to guarantee 
pressure monitoring. The intention here is to analyse thickness 
reduction; thus, the forming pressure applied was constant; this 
setup is able to apply a forming pressure curve responsible for 
maintaining the strains rate constant, for example. 

2.2 Selected System for strain measurements 
 

The strain measurement was carried out employing the optical 
measurement system GOM-ARAMIS. The recorded data was 
compiled and critically analyzed. 

The measurement system used to analyse the strain time 
evolution of a bulge test uses the three-dimensional optical 
measurement system (GOM-ARAMIS). This system provided 3D 
Optical analyses of PbSn 60-40 sheet forming, with high temporal 
resolution, as well as high accuracy, and its measure results are 
the 3D coordinates of position; it is described from the calibration 
steps to the application of this system to measure the thickness 
time reduction under biaxial fluid static expansion. 
 
a) 

 
 

b) 

 
 
Fig. 1. a) Experimental Setup and b) Control instrumentation 
schema  
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true stress - true strain curve. Based on this limitation, the bulge 
test is used to achieve under bi-axial loading conditions much 
larger strain range. The sheet metals under biaxial tension can 
withstand much higher strain levels without local necking or 
fracture than in the tensile testing [4]. 

In this regard, the bulge test was proposed by Cheng et al [5], 
in which a thin circular plate is clamped by a hydraulic press and 
argon pressure gas is applied; the sheet is deformed assuming 
a semi-spherical shape. The dome height, h, is measured using an 
LVDT device as a function of time, geometric relationships relate 
pressure with stress, and stress-strain rate curves are obtained. 

Analytical models for bulge forming were proposed 
considering the thickness variation in bulged shapes [6-8]. 
Although the analytical and experimental results were reasonable, 
there is no agreement about how suitable they are to predict the 
thickness, as in the uniaxial tensile test. Thus, to check whether 
a model reproduces an actual test is necessary to develop an 
instrumented biaxial test, in which specific parameters are 
obtained from the test in situ, real time and from the same 
specimen. 

In this paper, a bulge test of a Pb-Sn alloy was conducted 
at room temperature. During the test, the bulge topography is 
continuously recorded using an ARAMIS 3D optical 
measurement system [9] while the dome height is also 
continuously measured with an ultrasonic pulse-echo 
technique [10]. 

Ultrasound is known to be an accurate and reliable measuring 
method. Measurements can be achieved by transmitting a sound 
pulse into just one side of a material and capturing the echo which 
arrives from the pulse reflection on the back-wall. The ultrasound 
pulse-echo is an interesting method to measure the dome height 
during the bulge test. On-line ultrasonic thickness measurement 
should/can provide a proper comparison and improve the 
understanding of the forming process. 

Firstly the indirect measurement system and the direct one are 
presented; the former is a digital image correlation system and the 
latter is the ultrasound pulse-echo method. 
 
 

2. Indirect Measurement System (IMS) 
 
 
2.1 Summary description of IMS 
 

The control system project is divided into tracking variables: 
Strain measurement and pressure measurement. In order to 
analyse thickness reduction through strain measurement, this 
system was already used to make a comparison between 
experimental measurements of the dome thickness reduction and 
the two analytical predictions using equations [11].  

Fig. 1 shows the experimental setup and the schema used to 
measure the strain and the pressure. 

In summary, the acquisition system works to guarantee 
pressure monitoring. The intention here is to analyse thickness 
reduction; thus, the forming pressure applied was constant; this 
setup is able to apply a forming pressure curve responsible for 
maintaining the strains rate constant, for example. 

2.2 Selected System for strain measurements 
 

The strain measurement was carried out employing the optical 
measurement system GOM-ARAMIS. The recorded data was 
compiled and critically analyzed. 

The measurement system used to analyse the strain time 
evolution of a bulge test uses the three-dimensional optical 
measurement system (GOM-ARAMIS). This system provided 3D 
Optical analyses of PbSn 60-40 sheet forming, with high temporal 
resolution, as well as high accuracy, and its measure results are 
the 3D coordinates of position; it is described from the calibration 
steps to the application of this system to measure the thickness 
time reduction under biaxial fluid static expansion. 
 
a) 

 
 

b) 

 
 
Fig. 1. a) Experimental Setup and b) Control instrumentation 
schema  
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2.3.	�Fundaments and notation employed on the 
bases of strain measurement at GOM- 
ARAMIS

2.4.	�Deformation Gradient Tensor and x-y Strain 
Values
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  (25) 
 

Where t is the length in the thickness direction of the test 
piece, v is the velocity of sound waves in the material, and Tf is 
the measured delay time.  

Measurements are made between two successive back wall 
echoes, using direct contact transducers with a Vaseline couplant 
layer. This mode is employed because there is a clean multiple 
back wall echoes appearance, which typically limits its use to 
materials of relatively low attenuation and high acoustic 
impedance such as Pb-Sn alloy. While using this mode is possible 
regarding the tested material, it offers the highest measurement 
accuracy and the best minimum thickness resolution. 

Fig. 11 shows samples of voltage amplitude signals at 
different stages of the forming process obtained using the 
experimental setup described previously. 
 

 
 
Fig. 11. Three samples of a-scan obtained using pulse-echo mode 
showing the first and second reflection at different time steps 
 
 
3.3 Accurate resolution of echo detection 
 

Basically, the idea is to calculate the time difference at which 
each echo occurs. Instead of using peak-detection or threshold 
detection which relies only on a unique point over the time 
sequence, the cross-correlation is based on multiple points of the 
wave packages. The cross-correlation method is applied to detect 
the time-of-flight between two successive back wall echoes. In 
signal processing, auto-correlation is the cross-correlation of 
a signal with itself. 
 

 (26) 
 

In practice, the time-of-flight, Tf0, can be estimated by finding 
the peak of auto-correlated signals. This happens because the lag 
 relates to the time-of-flight, as the maximum positive correlation 

occurs indicating the arrival of the reflected echo. 
Fig. 12 shows the auto-correlated signals from Fig. 11, 

obtained by using a discrete time approximation of equation (26). 
A vertical line annotation indicates the calculated time-of-flight in 
each graph, showing a decrease as the thickness changes over 
time.  

3.4 Thickness reduction calculation 
 
The percentage of thickness reduction during a material 

thinning process is defined as TR. Considering equation (25), the 
relationship between thickness reduction and the measured time-
of-flight is 
 

 (27) 
 

Where t and t0 represent the current and the initial length in 
the thickness direction; Tf and Tf0 represent the current and initial 
measured time-of-flight, respectively. As the thickness reduction 
calculation does not depend on the knowledge of mechanical 
properties, the term of the sound wave velocity can be dropped in 
equation (27). Fig. 12 shows normalized TR to ignore the energy 
influence in this comparison. 
 

 
 
Fig. 12. Normalized auto-correlation of a-scan signals showing 
the time-of-flight detection for each a-scan 
 
 

4. Experimental methodology 
 

A Pb-Sn60 (40% Pb and 60% Sn) laboratory cast ingot was 
conventionally rolled, and circular blanks (260 mm diameter) 
were machined from the sheet. 

The test was performed at room temperature using 
compressed air, since the league has no oxidation problems.  
Fig. 13 shows a photograph of the bulge test tool fabricated in 
steel ABNT 1045. The blank is inserted between the base and the 
blank holder.  

 

 
 

Fig. 13. The bulge test tooling 

3.	�Direct measurement system

3.1.	�The direct measurement system summary 
description

3.2.	�Ultrasonic thickness technique
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Where t is the length in the thickness direction of the test 
piece, v is the velocity of sound waves in the material, and Tf is 
the measured delay time.  

Measurements are made between two successive back wall 
echoes, using direct contact transducers with a Vaseline couplant 
layer. This mode is employed because there is a clean multiple 
back wall echoes appearance, which typically limits its use to 
materials of relatively low attenuation and high acoustic 
impedance such as Pb-Sn alloy. While using this mode is possible 
regarding the tested material, it offers the highest measurement 
accuracy and the best minimum thickness resolution. 

Fig. 11 shows samples of voltage amplitude signals at 
different stages of the forming process obtained using the 
experimental setup described previously. 
 

 
 
Fig. 11. Three samples of a-scan obtained using pulse-echo mode 
showing the first and second reflection at different time steps 
 
 
3.3 Accurate resolution of echo detection 
 

Basically, the idea is to calculate the time difference at which 
each echo occurs. Instead of using peak-detection or threshold 
detection which relies only on a unique point over the time 
sequence, the cross-correlation is based on multiple points of the 
wave packages. The cross-correlation method is applied to detect 
the time-of-flight between two successive back wall echoes. In 
signal processing, auto-correlation is the cross-correlation of 
a signal with itself. 
 

 (26) 
 

In practice, the time-of-flight, Tf0, can be estimated by finding 
the peak of auto-correlated signals. This happens because the lag 
 relates to the time-of-flight, as the maximum positive correlation 

occurs indicating the arrival of the reflected echo. 
Fig. 12 shows the auto-correlated signals from Fig. 11, 

obtained by using a discrete time approximation of equation (26). 
A vertical line annotation indicates the calculated time-of-flight in 
each graph, showing a decrease as the thickness changes over 
time.  

3.4 Thickness reduction calculation 
 
The percentage of thickness reduction during a material 

thinning process is defined as TR. Considering equation (25), the 
relationship between thickness reduction and the measured time-
of-flight is 
 

 (27) 
 

Where t and t0 represent the current and the initial length in 
the thickness direction; Tf and Tf0 represent the current and initial 
measured time-of-flight, respectively. As the thickness reduction 
calculation does not depend on the knowledge of mechanical 
properties, the term of the sound wave velocity can be dropped in 
equation (27). Fig. 12 shows normalized TR to ignore the energy 
influence in this comparison. 
 

 
 
Fig. 12. Normalized auto-correlation of a-scan signals showing 
the time-of-flight detection for each a-scan 
 
 

4. Experimental methodology 
 

A Pb-Sn60 (40% Pb and 60% Sn) laboratory cast ingot was 
conventionally rolled, and circular blanks (260 mm diameter) 
were machined from the sheet. 

The test was performed at room temperature using 
compressed air, since the league has no oxidation problems.  
Fig. 13 shows a photograph of the bulge test tool fabricated in 
steel ABNT 1045. The blank is inserted between the base and the 
blank holder.  

 

 
 

Fig. 13. The bulge test tooling 

3.3.	�Accurate resolution of echo detection

3.4.	Thickness reduction calculation

4.	�Experimental methodology
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of them it is possible to note that the difference between the 
tendency curve of the indirect results and the direct measurement 
are approximately 0.5 % of thickness reduction. 

The ultrasound pulse-echo method has the resolution of 
1.5 µm and the DIC has the resolution of 1 µm.  

Based on the resolution of the measurement systems, and the 
constant difference between the tendency curve of the indirect 
results and the direct measurement over time, the comparison 
between the direct and indirect measurement systems is validated. 

Fig. 20 represents the time behaviour agreement for the 
monitored points, the six-stage point (0-5) and the ultrasonic 
measurement point. 
 
 

References 
[1] Y. Chen, K. Kibble, R. Hall, X. Huang, Numerical analysis 

of superplastic blow forming of Ti-6Al-4V alloys, Materials 
and Design 22 (2001) 679-685. 

[2] V. Gagov, N. Feschiev, D.S. Comsa, E. Minev, Strain 
hardening evaluation by bulge testing of sheet metals, 
Proceedings of the 12th International Scientific Conference 
on “Achievements in Mechanical and Materials 
Engineering”, Gliwice, 2003. 

[3] P. Guanabara Jr., L.O. BUENO, Assessing the superplastic 
behaviour of a Fe-Mn-Al austenitic stainless steel. 
Proceedings of the 61th Annual Congress ABM, Associação 
Brasileira de Metalurgia e Materiais, 2006, 2654-2663.  

[4] B. Tomov, V. Gagov, E. Yankov, R. Radev, Research 
highligths of sheet metal testing by hydraulic bulging, 
Journal of Achievements in Materials and Manufacturing 
Engineering 46/1 (2011) 65-70. 

[5] J. Cheng, The determination of material parameters from 
superplas-tic inflation test, Journal of Materials Processing 
Technology 58 (1996) 233-246. 

[6] P. Guanabara Jr., G.F. Batalha, Conformação superplástica e 
otimização dos parâmetros do material - uma breve revisão. 
In: 64º Anual Congress ABM, Associação Brasileira de 
Metalurgia e Materiais-ABM, 2009, 1. 

[7] Y. Aoura, Contribution a la modélisation du comportement 
super-plástique des alliages métalliques pour les procédés de 
mise em forme, Tesis presented at École Nationale 
Supérieure d’Arts et Métiers, 2004. 

[8] B. Baudelet, J. Lian, A composite model for superplasticity, 
Journal of Materials Science 30 (1995) 1977-1987. 

[9] G.L. Damoulis, G.F. Batalha, New trends in sheet metal 
forming analysis and optimization trough the use of 
optical meas-urement technology to control springback, 
International Journal of Material Forming 3 (2010)  
29-39.  

[10] K.A. Fowler, G.M. Elfbaum, K.A. Smith, T.J. Nelligan, 
Theory and application of precision ultrasonic thickness 
gauging, Insight 38 (1996) 582 -592. 

[11] E.P. Marinho, A. Sakata, E.F. Prados, G.F. Batalha, 
Instrumentation and Control of a Bulge Test on 
a Superplastic Pb-Sn Alloy, Trans Tech Publications, 
Materials Science Forum 735 (2013) 224-231. 

[12] S. Tománek, V. Kafka, Non-contact Deformation 
Measurement by ARAMIS Photogrammetry System, 
Aerospace Proceedings, Prague, 1 (2006) 13-17. 

[13] GOM mbH. ARAMIS user Manual - Software, ARAMIS 
6.1 and higher, Braunschweig, Germany, 2009. 

[14] B. Stier, S. Reese, Verification of an optical metrology 
system (ARAMIS) by comparing experimental data with FE 
calculations and continuum approaches, Proceedings in 
Applied Mathematics and Mechanics 11 (2011) 289-290. 

[15] G. Giuliano, Thickness and strain rate at the sheet dome 
apex in superplastic bulge forming tests, Proceedings of the 
12th International Esaform Conference on Material Forming, 
Italy, 2009. 

[16] M.A. Sutton, J.J. Orteu, H.W. Schreier, Image correlation 
for shape, motion and deformation measurements, Springer 
Publishing Company, 2009. 

[17] M. Vulcan, Der pneumatische tiefungsversuch und seine 
anwendug in der superplastischen aluminium-
blechumformung, Doctor of Engineering Thesis, University 
of Stuttgart, Germany, 2006, 108. 

[18] S. Dejardin, J.C. Gelin, S. Thibaud, On-line thickness 
measurement in incremental sheet forming process, 
Proceedings of the 13th International Conference on Metal 
Forming, Toyohashi 19-22, 2010, 938-941. 

[19] G.F. Batalha, M. Stipkovic, C.E.V. Salazar, Analysis of the 
contact conditions and its influence on the interface friction 
in forming process, Proceedings of the International 
Conference on Metal Forming, Balkema, Rotterdam, 2000. 

 

References

http://www.readingdirect.org
http://www.readingdirect.org

